1. Identify the following as reactions that release energy or reactions that absorb energy:
(a) combustion
(b) respiration
(c) photosynthesis
2. Glucose is produced by photosynthesis according to the following equation:

$$
6 \mathrm{CO}_{2(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(a q)}+6 \mathrm{O}_{2(g)} \quad \Delta \mathrm{H}=+2820 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Write the thermochemical equation for the aerobic respiration of glucose.
3. (a) State whether the following reactions are endothermic or exothermic:
(i) $\mathrm{N}_{2(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{NO}_{(g)}$
$\Delta \mathrm{H}=+180 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(ii) $\mathrm{C}_{(s)}+\mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{2(g)}$
$\Delta \mathrm{H}=-394 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(iii) $\mathrm{C}_{2} \mathrm{H}_{6(g)}+3.5 \mathrm{O}_{2(g)} \rightarrow 2 \mathrm{CO}_{2(g)}+3 \mathrm{H}_{2} \mathrm{O}_{(g)}$
$\Delta \mathrm{H}=-360 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(iv) $6 \mathrm{CO}_{2(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(a q)}+6 \mathrm{O}_{2(g)}$
$\Delta \mathrm{H}=+2820 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) State which of the reactions in part (a) would cause, per mole of substance reacting:
(i) the most amount of heat energy absorbed?
(ii) the least amount of heat energy released, ignoring reactions that absorb energy?
4. When 50.0 mL of $2.00 \mathrm{~mol} \mathrm{~L}^{-1}$ hydrochloric acid is mixed with 50.0 mL of $2.00 \mathrm{~mol} \mathrm{~L}^{-1}$ sodium hydroxide in a calorimeter, the temperature goes up $22.2^{\circ} \mathrm{C}$. (Specific heat of water $=4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$)
(a) Calculate the energy change for the reaction.
(b) Calculate the enthalpy of neutralization (energy per mole of H^{+}transferred) in $\mathrm{kJ} \mathrm{mol}^{-1}$.
(c) Explain why it is preferable to use a polystyrene foam cup as a calorimeter instead of a glass beaker.
(d) State why the solution should be stirred during the reaction.
5. Consider the following two thermochemical equations:

$$
\begin{array}{ll}
\mathrm{KOH}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{K}_{(a q)}^{+}+\mathrm{OH}_{(a q)}^{-} & \Delta \mathrm{H}=-55 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{KOH}_{(a q)}+\mathrm{HCl}_{(a q)} \rightarrow \mathrm{KCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} & \Delta \mathrm{H}=-57.1 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

(a) Calculate the heat released when 100 g of potassium hydroxide is dissolved in excess water.
(b) Calculate the heat released when 200 mL of $0.500 \mathrm{~mol} \mathrm{~L}^{-1}$ hydrochloric acid is mixed with 300 mL of 0.400 $\mathrm{mol} \mathrm{L} \mathrm{L}^{-1}$ potassium hydroxide.
(c) Calculate which releases more heat - dissolving 50 g of potassium hydroxide in excess water, or combining 500 mL of $2 \mathrm{~mol} \mathrm{~L}^{-1}$ potassium hydroxide with excess acid.
6. Ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$ is a substance commonly used in cold packs athletes use to treat injuries.
(a) The accepted value for the enthalpy of solution of ammonium nitrate is $+26.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Write the thermochemical equation for the dissolving of ammonium nitrate in water.
(b) An experiment to determine the enthalpy of solution was carried out in a school laboratory, and the following data was obtained:
Mass of ammonium nitrate $=3.00 \mathrm{~g}$
Mass of water $=100 \mathrm{~g}$
Initial temperature $=21.4^{\circ} \mathrm{C}$
Final temperature $=19.3^{\circ} \mathrm{C}$
(Specific heat of water $=4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$)
(i) Calculate the number of moles of ammonium nitrate added.
(ii) Calculate the amount of heat, in kJ , lost by the 100 g of water in the experiment. $/ 2$
(iii) Calculate, from the experiment, the enthalpy of solution of ammonium nitrate $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
(c) Suggest and explain one possible reason for the difference between the accepted value and the calculated value for the enthalpy of solution of ammonium nitrate.

