Structure of The Atom Questions

1.	a) Describe a line emission spectrum.b) Explain how line emission spectra can help identify the elements in some given hot vapour sample.	/1 /2
2.		
	a) Draw an example emission spectrum for hydrogen	/2
	b) Show the electromagnetic spectrum regions (ultraviolet, visible and infrared) on your diagram.	/1
	c) Describe the relationship between energy transitions in the atom and the position of lines on the spectrum.	/2
3.	Define the ionisation energy of an atom, and compare it to the work function of a metal.	/2
4.	Describe the changes in the spectrum of a filament globe as the temperature of the filament increases.	
		/2
5.	Explain why there are no absorption lines in the visible region for hydrogen at room temperature.	/2
6.	Explain the presence of absorption lines in the visible part of the sun's spectrum.	/1
7.	With the aid of an energy level diagram, explain the process of fluorescence.	/2
8.	Explain the difference between stimulated emission and spontaneous emission.	/2
9.	Draw an energy-level diagram showing an arrow to represent the transition corresponding to the lowest energy absorption line for that element.	/1
10	A helium-neon gas laser emits photons of frequency $f = 4.74 \times 10^{14}$ Hz. These photons are	

10. A helium-neon gas laser emits photons of frequency $f = 4.74 \times 10^{14}$ Hz. These photons are emitted when an excited neon atom makes a transition from the n = 3 to the n = 2 energy level, as shown in the diagram below:

n = 1 ground state

(a) Show that the energy of these photons is 1.96 eV.	/2
(b) Calculate the wavelength of the photons.	/2
(c) State the region of the electromagnetic spectrum in which this wavelength occurs.	/1
(d) Photons of this frequency are produced by stimulated emission in a helium–neon gas laser.	
(i) Explain why a population inversion of the neon atoms is necessary in a helium–neon ga	is laser. /2
(ii) Describe what is meant by a metastable state.	/1
(iii) State which energy level on the diagram above corresponds to the metastable state.	/1
(e) Describe how a helium–neon gas laser produces its amplified light.	/3
(f) State two useful properties of the light produced by a laser.	/1
(g) State two uses of lasers.	/1
(h) Discuss the requirements for safe handling of lasers.	/2