Momentum Questions

1. A stick drawing of a firework rocket is propelled by the expulsion of burning "exhaust" letters. The direction of the thrust is shown below:

(a) State the law of conservation of momentum.
(b) Use this law to explain why the rocket experiences constant acceleration (assuming the mass of the rocket stays constant, the exhaust letters are of equal mass and are expelled at a constant rate).

The firework (of mass m) is travelling at speed v when it explodes and breaks into two identical fragments, each of mass $\frac{m}{2}$.
The two fragments, fragment A and fragment B, each travel at an angle of 60° to the rocket's initial direction of motion, as shown in the diagram below:

(c) Determine the speed of fragment A in terms of v. Give reasons for your answer.
2.
a) Derive the equation $\Delta \vec{p}_{1}+\Delta \vec{p}_{2}=0$ expressing the conservation of momentum for two interacting particles. $/ 2$
b) Hence state an equation expressing the conservation of momentum for three interacting particles.
3.

A particle of mass 2.0 kg moving at $3.0 \mathrm{~ms}^{-1}$ collides with a stationary mass of 3.0 kg . After the collision the masses move off at right angles to each other, with the 2.0 kg mass having a velocity of $2.0 \mathrm{~ms}^{-1}$.
Calculate the speed of the 3.0 kg mass after the collision.
a) Explain in terms of the law of conservation of momentum, how the momentum of light particles (photons) can be used to accelerate a solar sail.
b) Explain, using vector diagrams, whether absorbed photons or reflected photons would give a craft with a

Abstract

solar sail more acceleration.

5. Ball A, with mass m is moving at speed $2.0 \mathrm{~ms}^{-1}$ and collides with ball B of mass 0.25 kg which is stationary. After the collision, the balls are moving away at right angles to each other, as shown below:

Determine the mass of ball A.
6. A stationary object explodes into three fragments, A, B and C, as shown below.

Fragment A has a mass of 0.10 kg
Fragment B has a mass of 0.13 kg and a speed of $0.29 \mathrm{~ms}^{-1}$
Fragment C has a mass of 0.095 kg and a speed of $0.32 \mathrm{~ms}^{-1}$
Fragments B and C are moving away at right angles to each other

Determine the speed and direction of fragment A.

