Shortcut information

Drag-speed

Use this information to answer (b)(iii):

$$
D=10 v^{2}
$$

Pressure-volume

Use this information to answer (d)(iv):

$$
P=2 \frac{1}{V}
$$

Pivot-mass

Use this information to answer (f):

$$
\begin{aligned}
& r_{3}=0.1 m_{2}+30 \\
& r_{2}=30.0
\end{aligned}
$$

Note: the above use mass in grams and distance in cm .

Solutions

Drag-speed

Use this information to answer (b)(iii):

$$
D=10 v^{2}
$$

Solution for (b)(iii):
$D=\frac{1}{2} \rho v^{2} A C$
$\therefore D=\frac{1}{2} \rho A C v^{2}$
$\therefore \frac{1}{2} \rho A C=$ gradient
$\therefore \frac{1}{2} \rho A C=10$
$\therefore C=\frac{10}{\frac{1}{2} \rho A}=\frac{10}{\frac{1}{2} \times 1.23 \times 0.25}=65$

Pressure-volume

Use this information to answer (d)(iv):

$$
P=2 \frac{1}{V}
$$

Solution for (d)(iv):
$P=\frac{b T}{V}$
$\therefore P=b T \frac{1}{V}$
$\therefore b T=$ gradient
$\therefore b T=2$
$\therefore T=\frac{2}{b}=\frac{2}{6.71 \times 10^{-3}}=300 \mathrm{~K}$ (1 s.f.)

Pivot-mass

Use this information to answer (f):

$$
\begin{aligned}
& r_{3}=0.1 m_{2}+30 \\
& r_{2}=30.0
\end{aligned}
$$

Note: the above use mass in grams and distance in cm .
Solution for (f):
$m_{3} r_{3}=m_{2} r_{2}+m_{1} r_{1}$
$\therefore r_{3}=\frac{m_{2} r_{2}}{m_{3}}+\frac{m_{1} r_{1}}{m_{3}}$
$\therefore r_{3}=\frac{r_{2}}{m_{3}} m_{2}+\frac{m_{1} r_{1}}{m_{3}}$
$\therefore \frac{r_{2}}{m_{3}}=$ gradient
$\therefore \frac{r_{2}}{m_{3}}=0.1$
$\therefore r_{2}=0.1 \times m_{3}$
$\therefore m_{3}=\frac{r_{2}}{0.1}=\frac{30.0}{0.1}=300 \mathrm{~g}(1$ s.f. $)$

