Magnetic Force

SOLUTIONS

1.

a) out of the page

- b) to the left
- c) towards the top of the page
- d) into the page

/4

2.

a) Force is proportional to $\sin\!\theta$, where θ is the angle between direction of the current and the direction of the magnetic field.

If θ is 0° (parallel) or 180° (antiparallel), $\sin \theta = 0$ so F = 0.

/2

b)
$$F = I\Delta lB \sin \theta$$

= 0.951×20.1×10⁻²×4.99×1
= 0.954N (3 s.f.)

/2

c)
$$B = \frac{F}{I\Delta l \sin \theta}$$

= $\frac{0.954}{0.951 \times 20.1 \times 10^{-2} \times \sin(25.0^{\circ})}$
= 11.8 T (3 s.f.)

/2

d)
$$\theta = \sin^{-1} \left(\frac{F}{I\Delta lB} \right)$$

= $\sin^{-1} \left(\frac{0.954 \times 2}{0.951 \times 20.1 \times 10^{-2} \times 11.8} \right)$
= 57.7° (3 s.f.)

/2

